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The aim of the present paper is to analyse the dynamics of the Lamb—Oseen vortex
when continuously forced by a random excitation. Stochastic forcing is classically
used to mimic external perturbations in realistic configurations, such as variations
of atmospheric conditions, weak compressibility effects, wing-generated turbulence
injected into aircraft wakes, or free-stream turbulence in wind tunnel experiments. The
linear response of the Lamb—Oseen vortex to stochastic forcing can be decomposed in
relation to the azimuthal symmetry of the perturbation given by the azimuthal
wavenumber m. In the axisymmetric case m =0, we find that the response is
characterized by the generation of vortex rings at the outer periphery of the vortex
core. This result is consistent with recurrent observations of such dynamics in the
study of vortex—turbulence interaction. When considering helical perturbations m =1,
the response at large axial wavelengths consists of a global translation of the vortex, a
feature very similar to the phenomenon of vortex meandering (or wandering) observed
experimentally, corresponding to an erratic displacement of the vortex core. At smaller
wavelengths, we find that stochastic forcing can excite specific oscillating modes of
the Lamb—-Oseen vortex. More precisely, damped critical-layer modes can emerge via
a resonance mechanism. For perturbations with higher azimuthal wavenumber m =2,
we find no structure that clearly dominates the response of the vortex.

1. Introduction

From large hurricanes developing in the atmosphere to the well-known Kelvin—
Helmholtz billows in shear layers, vortices are ubiquitous in fluid flows. They are
notably major ingredients of turbulence as they are involved in the energy cascade,
entrainment and mixing. The understanding of their dynamics is thus of considerable
interest. In the context of aeronautics, the need to reduce the aircraft wake and the
associated hazards for following planes has motivated the study of the stability of
columnar vortices. Since the early works of Crow (1970), Moore & Saffman (1975) and
Tsai & Widnall (1976), many studies have shown the sensitivity of the wing-tip vortex
pair to both long- and short-wave cooperative instabilities, see Leweke & Williamson
(1998) or Billant, Brancher & Chomaz (1999) amongst others. On the other hand,
a single vortex is asymptotically stable but it supports various families of oscillating
and damped modes amongst which are the so-called Kelvin waves (Fabre, Sipp &
Jacquin 2006). Although commonly used, the standard modal stability approach
fails to fully predict the vortex linear dynamics; transient growth can occur when
specific perturbations are introduced into the flow. Antkowiak & Brancher (2004)
have calculated such disturbances for the Lamb—Oseen vortex and found evidence
of a core contamination mechanism combining Orr (1907a,b) and induction effects.
The associated energy amplification can reach levels high enough to activate the
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nonlinearities and eventually lead to another equilibrium state or trigger a so-called
‘bypass’ transition to turbulence. In the axisymmetric case, Pradeep & Hussain (2006)
(referred to as PHO6 in the following) recently found similar transient amplifications.
Antkowiak & Brancher (2007) (hereinafter referred to as AB07) completed the picture
with the identification of a physical mechanism specific to vortices leading to the
generation of vortex rings in the potential region around the vortex core.

The inability of modal analysis to predict such transient energy amplification was
previously shown for wall-bounded shear flows, see Butler & Farrell (1992, 1993),
Reddy & Henningson (1993) and Farrell & Ioannou (1993a). Thus both Couette and
Poiseuille plane flows experience energy amplification even in their modal stability
domain when subjected to adequate perturbation. The physical mechanism involved
consists of the emergence of strong streamwise velocity streaks emanating from
streamwise vortices in the flow.

This general occurrence of transient growth in asymptotically stable flows is
intimately related to the non-normality of the associated linear dynamical operator
(Trefethen et al. 1993; Farrell & Ioannou 1994). Let us consider a flow represented
by the following dynamical system for the state vector x:

dx
T Ax, (1.1)
where A is the operator corresponding to the Navier—Stokes equations linearized
around a given basic state. The base flow is said to be asymptotically stable if all
the eigenvalues of A have a negative real part. When the dynamical operator is
non-normal, i.e. A¥A #+ AAY with (.)¥ denoting the Hermitian transpose (Farrell
& loannou 1993b, 1994), this approach does not address the issue of the flow
energetics for finite times. The stability analysis of a non-normal operator results in
a set of modes that decay individually but do not form an orthogonal basis. As a
result, one can construct a perturbation on this basis with expansion coefficients that
are large but with modes cancelling each other to give an initial energy of order
one. Since each eigenmode evolves independently, the initial cancellation may not
persist. The energy of the disturbance can thus increase substantially before decaying
ultimately to zero. Schmid (2007) gives an illustrative two-dimensional geometric
example of this scenario in his recent review on non-modal stability analysis. This
mathematical property of non-normal operators reveals of physical mechanisms that
lead to transient energy amplification. The lack of orthogonality corresponds to the
potential for energy extraction from the basic flow by a subspace of perturbations,
leading to transient growth despite the absence of modal (i.e. exponential) instability,
a result already pointed out in the seminal work of Orr (1907a,b).

This characteristics of non-normal operators can be explained in a more formal
way by considering the equation governing the instantaneous rate of energy change

dE d, 4 Hoon

& dr (x"x) =x"(A" + A)x, (1.2)
where the energy of the system is defined by E = x” x in the H, norm. Energy growth
occurs when the right-hand side of equation (1.2) is positive. This is mathematically
equivalent to requiring that a portion of the numerical range of A, defined by
N(A)={z € C,z=x"Ax, x"x =1}, lies in the right half-plane (Reddy, Schmid &
Henningson 1993). This can be turned into a condition on the spectrum of the energy
operator # = A" + A, since the largest eigenvalue of %%f , referred to as the numerical
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abscissa (Schmid 2007), is the supremum of Re[N(A)]. Transient growth of energy is
likely to occur if 2 has at least one eigenvalue with a positive real part.

For flows experiencing such transient growth, it is of interest to find the ‘most
dangerous initial condition’ through a process of optimization. It consists of
identifying the initial condition that maximizes its energy growth at a fixed time r.
Such a disturbance is referred to as an optimal perturbation. A second optimization
can be conducted with respect to time, leading to the optimal time 7,,, that defines
the most amplified optimal perturbation, often called the global optimal perturbation.
In some cases, it is also relevant to look at other disturbances experiencing transient
energy amplification. They are termed sub-optimal perturbations. Among them,
short-term optimals correspond to optimal perturbations for fixed times 7 <1,
(Corbett & Bottaro 2001).

Given the existence of such optimal disturbances in columnar vortices (Antkowiak
& Brancher 2004); PH06; ABO07), the important point is to know if they can naturally
emerge from uncontrolled perturbations as diverse as atmospheric turbulence,
background noise in wind tunnel experiments or turbulence generated by aircraft
wings. While the potential for substantial transient growth of properly defined
initial perturbations certainly exists, recurrent criticisms of optimal perturbation
analyses concern the particular structure of these disturbances. These can be quite
intricate and unlikely to occur spontaneously in real conditions since there is no
apparent mechanism to excite such specific perturbations. This issue is addressed
theoretically in the present paper to some extent. The general technique is to
linearize the Navier—Stokes equations of small perturbations to a particular mean
flow and then to augment these linear dynamics with stochastic forcing, which is
uncorrelated in time i.e. ‘white noise’) and also possibly uncorrelated in space. This
general maintained forcing can be interpreted as a crude way to mimic perturbations
arising continuously in real transitioning flows due to background turbulence or
any kind of uncontrolled (in space and time) ambient fluctuations. But it should
be kept in mind that the main objective of the present work is to understand the
role played by the transiently growing disturbances found in the previous optimal
perturbation analyses when the forcing lacks the bias of any specific forcing function.
In that context, while this analysis may not necessarily apply directly to, say,
real-life turbulent vortical flows where only certain types of disturbances may be
introduced, it will nevertheless give insight into the importance of the physical
mechanisms of transient growth uncovered by the previous optimal perturbation
analyses.

The associated dynamical equations can be thought of as a system where
background noise is regarded as an ‘input’ and the resulting random velocity field
representing the response of the flow as the ‘output’. The ratio of the output energy or
variance to that of the input noise gives the energy amplification or gain of the system
(Schmid 2007). This analysis has been successfully applied to wall-bounded shear flows
(Farrell & Ioannou 1993b; Bamich & Dahleh 2001) and to two-dimensional vortices
with radial inflow derived from geophysical applications (Nolan & Farrell 1999). In
atmospheric sciences this approach is a classical tool of investigation for the prediction
of the statistics of meteorological flows such as the long- and short-term deviations of
hurricane tracks from that prescribed by the surrounding flow. For instance, Whitaker
& Sardeshmukh (1998) used such a stochastic forcing analysis to recover successfully
the observed variances of the winter Northern Hemisphere flow (in particular the
location and structure of the storm tracks). Not only are these previous works in
good agreement with the results from optimal perturbation analyses, pointing to the
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robustness of the growth mechanisms uncovered by these analyses, but they are also
shown to be complementary to them.

The paper is organized as follows. The stochastic forcing formulation is introduced
for any general linear dynamical system in §2. Then its derivation for the Navier—
Stokes equations is considered. The results are presented in § 3, classically ordered by
increasing azimuthal wavenumbers. The results are discussed and interpreted in §4.
The paper ends with the conclusions and perspectives in the last section, §5.

2. Numerical formulation
2.1. Stochastically driven linear dynamical systems

The formalism employed in this section is classical in control theory and we only give
a brief synopsis of the main steps for completeness. We consider an asymptotically
stable linear dynamical system of the form (1.1) under the influence of an external
forcing &. The system of governing equations can be conveniently written in the
following state-space form classically used in the control literature (Jovanovic &
Bamieh 2005):

dx

A B 2.1
ar x + BE, (2.1a)

y = Cx, (2.1b)

where x is the state vector with initial condition x, and y is the output vector. The
matrices B and C denote the input and output operators. The forcing considered is
stochastic in nature and is assumed to be a temporal Gaussian white noise process
with zero mean

(&) =0, (2.2q)
(E(0E" (1)) = RS(1 — 1), (2.2b)

where ( ) is the ensemble averaging operator and R the spatial covariance matrix.
To represent a specific configuration, the matrix R can be implemented with respect
to experimental data. In the absence of such information it can be set equal to the
identity matrix, i.e. R;; =§;;, leading to a spatio-temporal Gaussian white noise. Some
refinements may be included in the forcing term in order to represent more specific
perturbation fields. For instance, the forcing amplitude can peak near the walls to
take into account their influence in wind tunnel experiments as done by Jovanovic &
Bamieh (2005) for wall-bounded shear flows. Here, we limit the statistical properties of
the forcing terms to the above-mentioned ones so as to mimic the most generic free-
stream disturbances occurring in real conditions without favouring any particular
region of the flow. As claimed by Farrell & loannou (1993b), this forcing is not
intended to reproduce the full complexity of turbulence observed in experiments. Its
aim is to retain the essential physics underlying the variance maintained from any
external continuous perturbation field. In that sense, the analysis will give insight
into the receptivity of the flow without introducing any a priori bias through the
characteristics of the forcing in the physical or spectral space.

As a response to this forcing, the emerging state y is a stochastic process with
second-order statistics given by the covariance matrix

12
(y(t)y"(t)) =C /0 Al=IBB A" (—)ds ¢ = cQ(r)c”, (2.3)
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where Q(¢) is referred to as the controllability Gramian. If the dynamical operator A
does not vary in time, the system will reach a statistical steady state where the matrix
Q.. = lim,_,, Q(¢) is solution of a Lyapunov equation

AQ, +Q A" = —BB". (2.4)

The mean energy corresponds to the variance of the output stochastic process and
can be extracted from the covariance, ie. (E(t)) = (y"(¢t)y(t)) = trace[C” Q(t)C]. As
classically done in the control literature (Zhou, Doyle & Glover 1995; Schmid
2007), this quantity can be interpreted as the H,-norm of the transfer function
H (w) = C(iwl — A)~'B associated with the linear system (2.1). To obtain the energy
amplification, denoted as G.,=(E,)/(E:,,), one has to determine the input energy
introduced by the stochastic forcing. It comes from the variance equation

%(E(t)) = (x(ActCc+ cfcA)x) + (x""ccBE) + ("B CH Cx). (2.5)
Using (2.1b) and (2.2b), the input energy appearing on the left-hand side of (2.5)
becomes

(Einp) = (x"C"CBE) + (""B"C" Cx) = 2 trace[B" (C" C)’B]. (2.6)

Coherent structures can be extracted from the random flow field resulting from the
forcing through the computation of the eigenmodes of the controllability Gramian.
The eigenvalue decomposition of Q.,, known as the Karhunen-Loeve (KL) or proper
orthogonal decomposition (POD), will provide flow patterns that participate in the
response, ordered according to their contribution to the variance of the statistically
steady state (Schmid 2007)

Qooz(p) — J/(p)z(p). (2.7)

These distributions will be referred to as output structures hereinafter. It is also of
interest to know which coherent structures from the input noise participate most in
the excitation of the system. This issue can be addressed by considering the adjoint
dynamical systemt (A, B", C") forced with a similar Gaussian white noise. The
second-order statistics of the adjoint output stochastic process are contained in the
covariance matrix B P(t)B where P(t) is the observability Gramian defined as

t
P(t) = / eV = cH ceAl—ds. (2.8)
0

Its long-time value is also solution of a Lyapunov equation
AP, +P, A= —-C"C. (2.9)

Finally, the eigenvalue decomposition of P, called the back Karhunen-Loeve
decomposition by Farrell & loannou (1993b), will provide the coherent forcing
structures (referred to as input structures in what follows) ranked according to their
contribution to the system excitation

p%;(p) — Ig(p);(p). (2.10)

T A specific notation, say A", should have been used for the adjoint operator as its definition
strictly depends on the chosen inner product. In the present case the adjoint operator AT is the
same as the Hermitian transpose A? since the standard inner product of the Hilbert space .# with
identity weighting is used (Hoepffner 2006).
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2.2. Stochastic forcing applied to Navier—Stokes equations

The base flow considered in this paper is the Lamb—Oseen vortex. Its non-dimensional
azimuthal velocity field is

V(r) = %(1 —e), (2.11)

where the characteristic scales used are the vortex dispersion radius ry and the
angular velocity at the axis £2. In the following, 2(r)=V(r)/r=(1—¢"")/r? and
Z(r)=(1/r)3,(rV(r)) =2¢™"" represent respectively the angular velocity and the axial
vorticity of the columnar vortex. We now consider infinitesimal disturbances expanded
in a modal form

[y, i, i, p1(r, 0,2, 1) = [u, v, w, p1(r, 1)e™ "% +c.c., (2.12)

where c.c. stands for the complex conjugate, m is the azimuthal wavenumber and & the
axial wavenumber. The linearization of the incompressible Navier—Stokes equations
gives the following set of equations:

1 )
So,rw) + 2y +ikw =0, (2.13a)
r r
. 1 1 2i
ou+imQu —2Q2v=—0,p+ — || Aps — = u—ﬂv , (2.13h)
Re ’ r2 r?
. i 1 1 2i
8,v+1m!2v+Zu=—1ﬁp+f Apik— — U—{—ﬂu , (2.13¢)
r Re ' r2 r2
1
ow +im2w = —ikp + RfAmJ(lU , (2.13d)
e
where the Reynolds number is Re = Q¢rZ/v=I"/(2nv) and
1 2
Am,k = 8rr + 78r - miz - kz- (214)
r r

The set of variables is reduced to the three velocity components by eliminating the
pressure with the Poisson equation. The state variables correspond to the primitive
ones, i.e. x=[u, v, w], and both the input and output operators B and C of §2.1
simply reduce to the identity operator. A Chebyshev spectral collocation method with
an algebraic mapping identical to that described by Fabre & Jacquin (2004) and
Fabre et al. (2006) is used for the spatial discretization of the problem. The energy of
the perturbation, which defines a weighted inner product, is defined classically by

1 (v}
E=(x,x)= 2/ (u'u+v'v+wwrdr, (2.15)
0

where * denotes the complex conjugate. The use of the energy-based inner product
requires a coordinate transform to convert the statistics measures into the more
standard Hermitian H, norm (Hoepffner 2006; Schmid 2007). From the Choleski
factorization of the symmetric definite positive weight operator W= M" M, the relation
between the two norms is || x|z = |[Mx|, and ||A|z = [|[MAM™'|,.

The calculations are carried out with MATLAB using the DMSuite package developed
by Weideman & Reddy (2000). The convergence of the numerical procedure depends
on both the truncation level N and the radial domain extent r,,,.. We tested the
sensitivity of the results to both parameters, and converged calculations were obtained
for N € [150, 300] and r,,,, € [5S000, 20000].
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FiGure 1. Energy amplification for the statistical steady state in the axisymmetric case
(m=0) as a function of the axial wavenumber k for various Reynolds numbers.

3. Results
3.1. The axisymmetric case (m =0)

The presentation of the results starts with the axisymmetric case. Figure 1 shows the
energy amplification as a function of the axial wavenumber for Reynolds numbers
varying from 500 to 10000. As in optimal perturbation analyses (PH06, ABO7),
high levels of amplification are observed. The plot also confirms that the largest
amplifications occur for small axial wavenumbers. The amplification levels reach
higher values than those found by optimal perturbation analyses, which can be easily
understood since the system is excited by a constant input and not solely by an
initial condition (Bamieh & Dahleh 2001). This difference in the level of amplification
between these two approaches is systematic.

For the k =1 case, we consider the hierarchy of both the input and output structures
according to their contribution to the sustained variance of the steady state. The
spectra resulting from the eigenvalue problems (2.7) and (2.10) are plotted in figure 2.
The energy amplification essentially results from the contribution of the few first
structures as the eigenvalues rapidly decrease to negligible values. The first input
structure is responsible for 62 % of the vortex excitation and dominates the forcing
field. In the same manner, the first ouput structure prevails in the vortex response
by contributing to 61 % of the variance sustained by the flow. Figure 3 gives the
spatial distribution of these two dominant structures. They are very similar to the
optimal perturbation at initial and optimal times found in the optimal perturbation
analyses of PHO6 and ABO7. The forcing structure consists of azimuthal velocity
streaks located in the quasi-potential region in the outer periphery of the vortex.
The physical mechanism leading to the azimuthal vortex rings of figure 3(b) has been
explained by ABO7. It has been called ‘anti-lift-up’ in reference to the so-called ‘lift-up’
mechanism occurring in planar shear flows, though it is radically different in nature.
Briefly, the azimuthal velocity streaks induce a local Coriolis force field yielding
a radial displacement of the fluid particles. Its potential part is balanced by the
pressure gradient to ensure flow incompressibility. Its rotational part feeds the tori of
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FIGURE 2. Contribution of (a) the output structures and (b) the input structures to the
excitation of the system. The case shown corresponds to m =0, k =1 and Re = 1000.
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FiGure 3. Structure of (a) the first input (forcing) function (isocontours of azimuthal velocity)
and (b) the first output (response) function (isocontours of azimuthal vorticity) for m =0,

Re =1000 and k = 1. Eight equally spaced levels are displayed and dashed contours correspond
to negative values.

azimuthal vorticity that constitute the vortex response displayed in figure 3(b). ABO7
established this original mechanism with the assumption of zero base vorticity. This
is a good approximation since the velocity streaks are localized in the quasi-potential
region of the base flow. The main trends are correctly captured by this scenario.
Nevertheless, the residual base vorticity in the outer periphery of the Lamb—Oseen
vortex is at the origin of a small deviation from this idealized view when approaching
the vortex core. One can identify weak secondary rolls in figure 3(b) located closer
to the vortex core. Antkowiak (2005) showed that they are the signature of waves
generated in the region of non-zero epicyclic frequency of the basen flow « defined
by «k(r)>=282(r)Z(r) (Rayleigh discriminant). Mathematically, this comes from the
coupling term associated with the base vorticity Z(r) in the equation for the azimuthal
velocity, see (2.13c¢).

On varying the axial wavenumber, the radial location of both the azimuthal
velocity streaks and the resulting azimuthal vortex rings increases with increasing
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FIGURE 4. (a) Influence of the Reynolds number on the energy amplification factor for k=1
and m =0. The cross symbols represent calculations and the dashed-dotted line is the theoretical
scaling derived from Antkowiak (2005). For this axial wavenumber, the linear regression from
the numerical data gives a gain scaling as G, = O(Re*""). (b) Scaling law for small k.

wavelengths (data not shown). This is in agreement with the results of PH06 who
related the increasing radial position of the optimal perturbation (and consequently
the associated optimal time) with increasing k to the radial distribution of the vorticity-
to-strain ratio in the base flow. The anti-lift-up mechanism is observed to dominate
the flow dynamics even more as the axial wavenumber decreases. The contribution
of the dominant structures to the variance of the response is found to shrink at large
k. For k=0.1, the output (resp. input) structure accounts for 78 % (resp. 79 %) of
the energy amplification, whereas for k =2.5 the output (resp. input) structure only
accounts for 32 % (resp. 32 %) of the gain.

The next point to be discussed is the influence of the Reynolds number. From
figure 1, it is obvious that larger Reynolds numbers result in larger energy
amplifications by the flow. This is not surprising because of the energy balance
between the extraction of energy from the background flow by the stochastic forcing,
on the one hand, and the viscous dissipation on the other hand. When looking more
precisely at the Reynolds number dependence for the sustained variance, one can
obtain a scaling law from a sufficient number of calculations, see figure 4(a) for k = 1.
For the range of axial wavenumbers explored here, the scaling was always found to
be of the form G, = O(Re*) with « decreasing from 3 for k=0.1 to 2.5 for k=3.
Antkowiak (2005) showed that an O(Re?) scaling for the transient energy growth is
an upper bound. In the present study, the system is being continuously excited and
the energy accumulates before it dissipates. The characteristic diffusion time is O(Re).
Hence, the upper bound for the energy growth is O(Re?) here, which is consistent with
the results obtained. This scaling has been derived with the hypothesis of zero base
vorticity. The deviation from the predicted scaling law is explained by the existence
of the radially propagating waves mentioned previously, which are responsible for
an outward radiation of energy (Antkowiak 2005). This point also sheds light on
the variation of the exponent o with k in the scaling law found in this study. As
k is decreased, the input structures are located further away from the core where
the zero base vorticity assumption is more accurate (PH06; AB07). Hence for small
wavenumbers there is no wave generation and the scaling law in O(Re’) becomes
exact.
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FIGURE 5. Energy amplification in the helical case (m = 1) as a function of the axial
wavenumber k for various Reynolds numbers.

In addition, variation of the viscous diffusion does not affect the spatial structure
of forcing and response. The velocity and vorticity distributions displayed in figure 3
remain unchanged when the Reynolds number is varied. The only difference is in the
peaks of both azimuthal velocity and vorticity that rise to higher values when the
Reynolds number is increased. Finally, we also obtained an empirical scaling law for
the energy amplification when k goes to zero. We found numerically that the gain
roughly scales as O(Re’/k?) as can be seen in figure 4(b).

3.2. The helical case (m=1)

Figure 5 displays the energy gain for the m =1 helical waves as a function of
the axial wavenumber for different Reynolds numbers. Compared to the optimal
perturbation analyses of Antkowiak & Brancher (2004) and PHO6, similar global
trends are retrieved and large amplification levels are found. The large increase of
the gain for small k is observed as well as the peak around k=1.5 and an emerging
one at k =2.5, although less pronounced than in the optimal perturbation analysis of
Antkowiak & Brancher (2004). The latter point suggests that the dominant structure
does not emerge strongly in the vortex response for this range of wavenumber. This
is confirmed quantitatively since the first output structure only contributes 32 %
of the sustained variance for k =1.35 and Re =1000. This is the consequence of the
coexistence of several perturbations participating in the energy amplification when the
system is stochastically forced. For k = 1.35, the second emerging structure contributes
11 % to the gain. Hence, the vortex response to the forcing will be dominated by
the first output structure. Its axial vorticity is plotted in figure 6 as well as the
axial vorticity of the input structure that mainly excites it. This forcing structure
is composed of a pair of left-handed spiralling vorticity sheets similar to the initial
shape of the optimal perturbation found by Antkowiak & Brancher (2004). These
two folded vorticity layers located in the quasi-potential region of the flow are of
alternate sign. Their respective velocity inductions on the vortex core initially cancel
each other. As time evolves, they progressively uncoil via an Orr mechanism induced
by the base-flow differential rotation. Through this process, the reorganization of
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FIGURE 6. Isocontours of axial vorticity for the dominant structures for m =1 and Re = 1000.
The same convention as in figure 3 is used except for (d) where ten equally spaced levels have
been used. The dotted circle corresponds to the location of the maximum azimuthal velocity
of the Lamb—Oseen vortex at r =1.1209r(. First input structure for (a) k=1.35 accounting
for 31 % of the energy amplification, (c) k=2.5 and 17 %, (e) k=0.5 and 50 %. First output
structure for (b) k =1.35 accounting for 32 % of the flow excitation, (d) k =2.5 and 16 %, (f)
k=0.5 and 52 %.
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FIGURE 7. (a) Comparison of the velocity radial profiles between the first L1 mode of Fabre
et al. (2006) and the output structure emerging from the stochastic forcing for k =1.35 and
Re =1000. The solid, dashed and dotted lines correspond respectively to the radial, azimuthal
and axial velocity of the L1 wave. The cross symbols denote the velocity profiles of the output
structure. (b) Influence of the Reynolds number on the energy amplification factor for k=1
and m = 1. The cross symbols represent calculations and the dashed-dotted line the theoretical
scaling derived from Antkowiak (2005). For this axial wavenumber, the linear regression from
the numerical data gives a gain scaling as G,, = O(Re'?).

the vorticity sheets promotes an increasing velocity induction in the vortex core that
leads to the emergence of the dominant output structure of figure 6(»). This response
corresponds to the first critical-layer mode of Fabre et al. (2006) as can be seen from
the comparison of the velocity radial profiles in figure 7(a).

This phenomenon can be interpreted as a transient resonance mechanism: a Kelvin
wave of the Lamb—Oseen vortex is excited by the perturbation field induced by
the uncoiling of the initial vorticity spirals. This conjecture was first confirmed by
Antkowiak (2005) who made a successful comparison with an elementary model of
a forced harmonic oscillator. Choosing an adequate forcing term so as to correctly
reproduce the influence of the spiralling vorticity arms, the frequency of the forcing
term is found to fit very well those of the selected waves. PHO6 performed a similar
analysis on a top-hat (Rankine) vortex. Their results supported the hypothesis of
a resonance-driven excitation of vortex waves. From the simple harmonic oscillator
model, one can obtain an expression for the energy gain at large time when the forcing
term has a constant amplitude: G,, =1/(s* + (w; — )*) where w; is the pulsation of
the forcing term, w the pulsation of an eigenmode of the system and s its damping
rate. From this first estimation of the energy growth, one can see that the selection
process is based on two criteria. The first consists of selecting one of the least damped
waves — minimizing the s term — since it allows a maximal energy amplification. For
the present set of parameters, the first critical layer mode — referred to as the first
L1 mode according to the nomenclature of Fabre et al. (2006) — has the minimum
damping rate, see their figure 6. As a consequence it is found to be the dominant
output structure. Secondly, the disturbance may be in phase with the wave in order to
impose a continuous excitation — minimizing the (w; — w) term. This implies that the
rotation rate of the spirals is close to the pulsation of the mode. In the quasi-potential
region of the flow, the rotation rate of the vorticity sheets is £22(r) ~ 1/r>. Hence, the
radial position of the spiralling vorticity sheets is imposed by the mode frequency, i.e.
r~1/,/w where o is the wave pulsation, a criterion previously established by PH06
with the top-hat vortex model (see their figure 21¢). For the k=1.35 case, the first
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L1 wave frequency is 0.121, which gives a mean radial position of r=2.9. This is
consistent with the location of the spiral arms in figure 6(a).

Keeping in mind these two criteria for the resonance phenomenon and considering
the stability results of Fabre et al. (2006), it is expected that the mode selection depends
on the axial wavenumber. For larger wavenumbers, we found the second L1 mode as
the first output structure, see figure 6(d) for k =2.5. When k is decreased, the emerging
structure displayed in figure 6(f) is also of a different nature and corresponds to
the displacement wave of the Lamb—Oseen vortex (referred to as the D wave in
the following). According to the criteria previously mentioned, the emergence of the
D mode is not linked to an exact resonance. This wave being countergrade, i.e. its
pulsation is negative, no disturbance can have a similar rotation rate. In this case, the
D wave emerges only because its damping rate is very small compared to those of the
waves of the L family. It is noteworthy that the spiralling input structure is located
far from the vortex core, at a mean radial position r ~ 15. This represents a slow
time-rotating disturbance with an associated rotation rate §2(r)= 0.0044. This point
is linked to the fact that the displacement wave emergence corresponds to an exact
resonance in the two-dimensional limit for a steady forcing. For k=0, the D wave
is stationary and the exciting perturbation can satisfy the in-phase condition if the
spiral arms of vorticity are pushed outwards to an infinite radial position. Obviously,
this could not be verified numerically, but we found that the radial location of the
input structure increased on reducing the axial wavenumber from k=0.5 to k=0.1.
This exact resonance comes with an infinite energy growth as revealed by the large
increase of the gain when k goes to zero in figure 5.

The emergence of the displacement wave under continuous external perturbations is
a good candidate for explaining the vortex meandering (or wandering) phenomenon.
The nature of the wave, namely a long-wavelength bending wave, is in agreement
with the characteristics of the meandering observed in wind tunnel experiments
(Baker et al. 1974; Devenport et al. 1996). The theoretical approach used here,
which takes into account the external disturbances in the form of a continuous
random forcing, is consistent with real experimental conditions where background
noise is constantly exciting the wing-tip vortex. This point should be confirmed
experimentally by controlling, or at least quantifying, the perturbation field and by
correlating the data with measurements of the vortex response. Here we only give a
physical mechanism that could explain the occurrence of this phenomenon. But we
are still far from a comprehensive and fully predictive description that could help
experimentalists to filter out this erratic core displacement. To our knowledge, the
best way to proceed is proposed by Devenport et al. (1996), who used a Gaussian
model for the fluctuations of the vortex core position.

The effect of viscosity has been explored numerically and a general power law has
been obtained for the energy amplification, see figure 7(b) for k=1. For the range
of axial wavenumbers considered here, we found the scaling G, = O(Re!?®). This
exponent is considered valid for any k since very small variations were observed, i.e.
1.8 £0.02. Antkowiak (2005) showed that the transient energy growth is O(Re) for the
resonance phenomenon while it is O(Re*?) when only the Orr mechanism is active.
Following the same reasoning as in the axisymmetric case, the theoretical upper bound
for energy amplification under stochastic forcing is O(Re?). The results obtained here
are in good agreement with this scaling law. A decrease in viscous diffusion also
affects the structures. While the vorticity distribution of the Kelvin waves remains
practically unchanged, the spiral arms of the dominant disturbance become thinner
as the Reynolds number increases, a point already noticed by PH06. The peaks of



246 J. Fontane, P. Brancher and D. Fabre

100 - - - - -
% — Re =500
* Re=1000
--- Re=2000
== Re=5000
Re = 10000

105 2 /’ ”'\

10*H:

10%f

101.

0 . . . . .
10 0 0.5 1.0 1.5 2.0 2.5 3.0

k

FIGUrRe 8. Energy amplification reached for the statistical steady state in the double-helix
case (m=2) as a function of the axial wavenumber k for various Reynolds numbers.

vorticity also reach larger values, which leads to a stronger velocity induction in the
core when the spirals unfold and a higher level of energy amplification.

3.3. The double-helix case (m =2) and higher azimuthal wavenumbers

The energy gain of the vortex in response to double-helix perturbations is plotted
versus the axial wavenumber in figure 8 for different Reynolds numbers. The levels of
amplification are lower than in the axisymmetric case but with similar tendencies. For
a given Reynolds number, the larger the wavelength the larger the amplification. These
results are noticeably different from those of the optimal perturbation analysis (PHO06).
Not only are the levels much higher but the dependence on k is completely different.
The amplification maximum occurs for small wavenumbers and the curve does not
present the flat-shaped aspect displayed in figure 19(b) of PH06. The difference in the
results can be explained by two complementary arguments. First, the development
of the optimal perturbation is completed within few rotation periods of the vortex
(Antkowiak 2005). In this case, the transient energy growth of the optimal perturbation
may occur on too short a time scale, compared to the statistical mean time between
two consecutive excitations of the mode by the external forcing, for being efficiently
amplified. After excitation of the vortex with the optimal disturbance extracted from
the random noise, the process of energy amplification and decay is likely to be over
before another excitation happens. Hence, the energy gain resulting from successive
excitations is statistically unlikely to cumulate. As a result, the optimal perturbation
will be less amplified under a random forcing than a disturbance associated with a
less efficient transient mechanism but occurring on a longer time scale. This point is
related to the second argument: strong sub-optimal perturbations competing with the
optimal one may exist. They can eventually dominate the response of the vortex when
subjected to stochastic maintained forcing if they develop on a larger time scale than
the optimal one. Evidence for this conjecture can be obtained by looking at both the
input and output structures.

The structures that dominate the input forcing consist of the same kind of spiralling
structures as the ones identified in the m =1 helical case (figure 9). The resonance
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FIGURE 9. Isocontours of axial vorticity for the first functions for m =2 and Re =1000. The
same convention as in figure 3 is used. First input structure for (a) k =2.5 accounting for 8 %
of the energy amplification, (c¢) k =1 and 10 %. First output structure for (b) k =2.5 accounting
for 8 % of the flow excitation, (d) k=1 and 10 %.

mechanism leading to the selection of a Kelvin wave is active and the first output
structure for k =2.5, displayed in figure 9(b), corresponds to the flattening wave of
Fabre et al. (2006). This mode being by far the least damped, it is selected on frequency
grounds according to the criteria mentioned in the previous section. The mean radial
position of the entangled vorticity spirals is imposed by the pulsation of the mode.
However, while active, the resonance no longer dominates the flow dynamics since
the first input structure accounts for only 8 % of the sustained variance in this case.
The sub-optimals participate equally in the excitation of the vortex. For smaller
wavenumbers, transient resonance is not even the dominant mechanism leading to
energy amplification. Figure 9(d) shows the first output structure for k = 1. The vortex
response is only composed of the four initial vorticity sheets that have been uncoiled.
In this case, the Orr mechanism gives the largest energy growth and accounts for
10% of the total amplification. The spiralling vorticity arms of the input structure
are located far from the vortex core so that the time scale of the Orr mechanism is
long enough to be efficiently amplified by the stochastic forcing. Its time scale is given
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by the duration of the uncoiling of the vorticity arms, which is roughly evaluated by

2n

forr 6‘8,«9(7'}1)7 (31)
where e and r, are respectively the mean width and the radial position of the spiral
arm. For the perturbation plotted in figure 9(c), 7o, is found to be about 50 rotation
periods of the vortex, which is one order of magnitude larger than the optimal time. As
previously argued, this energy growth mechanism is activated on a longer time scale
than the transient resonance, and it is more efficiently amplified by the maintained
forcing. Inspection of the less dominant structures reveals that the flattening wave is
the fourth preferred response of the flow, accounting only for 4 % of the variance.
For the m =2 case, there is no structure that clearly dominates the flow response, by
contrast to what has been found for the m =0 and m =1 cases. Whatever the axial
wavenumber, the contribution of the most dominant output structure never exceeds
15 %.

Finally, our survey ends with a description of the vortex response for higher
azimuthal wavenumbers. We explored the flow behaviour under a continuous
stochastic forcing for m as large as 10 and always found energy amplification.
The observed gain levels decrease with increasing m and are far below those of the
three previous cases. The amplification curves present the same shape as for the m =2
case with a maximum when & tends to zero. The dynamics leading to energy growth
always consists of the Orr mechanism. The dominant input structure is the spiralling
vorticity sheets that uncoil due to the differential rotation. No transient resonance
mechanism has been found, as could have been expected by considering the large
damping rate of the Kelvin waves (Fabre et al. 2006). This phenomenon is valid for
all m > 2. While energy growth is observed, these cases are of limited interest as they
are exceedingly unlikely to prevail over the responses corresponding to the first three
azimuthal wavenumbers.

4. Discussion

The results obtained in the present study show a noticeable similarity between
the amplification curves for the different azimuthal wavenumbers considered here
(m € [0, 10]): the energy gain is maximum for k=0 and decreases as k increases.
This theoretical lack of intrinsic axial wavelength selection raises questions regarding
the use of the present results to predict the response of the vortex in real-life
conditions.

At this stage, we wish to underline that the interpretation of the amplification curves
must be undertaken carefully. If one wants to predict the selection of a particular
wavelength, a direct and hasty extrapolation of the results presented in this paper
can prove completely erroneous when compared to experiments without any caution.
Thus, taking the most amplified (k, m) modes corresponding to m =0 and k tending
to zero, it could be tempting to predict the systematic and dominant occurrence of
very large axisymmetric vortex rings at the outer periphery of the vortex, as presented
in §3.1. But this conclusion, if applied to realistic experiments or observations, must
be balanced by taking into account the departure of the experimental conditions
from the hypotheses that define the framework of the present analysis. It concerns
the unbounded character of the flow, the spectral content of the external forcing
and the influence of the nonlinearities. These points are discussed further in this
section.
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4.1. Bounded vs unbounded flows

First, the largest amplifications are obtained in the limit of infinite wavelengths
(k — 0) for every azimuthal wavenumber m, suggesting that the response of the
vortex should be systematically quasi-two-dimensional, at least for m > 0, and involve
very large structures. But it must be kept in mind that the input structures triggering
the vortex response (azimuthal streaks for m =0 and axial vorticity spirals for m > 0)
are localized radially further away from the vortex axis when k decreases, eventually
extending to infinity for & — 0. This singular behaviour questions the validity of
the unbounded flow hypothesis that is implicitly made in the present formulation.
It is expected that the predictions concerning the long-wave response of the vortex
put forward in the previous sections will be distorted by the presence of physical
boundaries at finite distance such as the sidewalls of the wind tunnel, or by taking
into account flow features ignored in the present model such as other vortices. The
present study found no intrinsic wavelength selection by the vortex and the process
of wavelength selection is extrinsic and therefore case-dependent.

Nevertheless, the present results show that the physical mechanisms of growth
involved in the response of the vortex systematically favour the structures with the
largest axial wavelength, admissible as long as their radial extent does not exceed
the limit of representativeness of the vortex flow model used here. We then expect
the present results to be relevant above a critical axial wavenumber k.~ 2m/r,
corresponding to a characteristic radial extent r. above which the vortex flow model
used here significantly departs from real-life conditions.

This discussion can also be supplemented, to a lesser extent, by the validity of the
infinite time limit required to reach theoretically a statistical steady state in the present
formulation. The input structures that are favoured in the & — 0 limit correspond to
infinitely slowly growing disturbances (Antkowiak & Brancher 2004; PH06; ABO07).
These perturbations thus may not have enough time to grow significantly in finite-time
experiments. This is a second source of distortion for the large-wavelength results
presented here. If the flow develops on a short or medium time scale, one can expect
the selection of finite-time optimal perturbations which can be radically different from
the structures predicted here for an infinite time horizon.

4.2. Initial turbulence vs. continuous white noise

The linear evolution of perturbations of a vortex flow is formally given by the
general solution of the governing equation (2.1a) which has two components: the
homogeneous solution which describes the evolution of initial conditions and the
particular solution which represents the long-time response of the flow to a continuous
external forcing. As mentioned by Schmid (2007), both parts are complementary and
fully describe the general dynamics of small perturbations.

The studies of perturbed vortices generally focus on the former point, the evolution
of initial conditions, such as temporal modal stability analyses (see Fabre et al. 2006
for the Lamb—Oseen vortex), optimal perturbation analyses (Antkowiak & Brancher
2004; PHO6; ABO7) or theoretical and numerical investigations of the response of
vortices to initially injected turbulence (Melander & Hussain 1993; Risso, Corjon &
Stoessel 1997; Miyazaki & Hunt 2000; Takahashi, Ishii & Miyazaki 2005; Marshall
& Beninati 2005). More particularly in the latter case, the objective is to understand
how the vortex immersed in an initial turbulent field responds to this perturbation
and how in return the initial turbulence is affected by the presence of the vortex and
the associated shear and rotation which are known to drastically alter the statistics
of turbulence on a short time scale.
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By contrast with these studies, the approach adopted in the present paper is quite
different, as it focuses on the long-time response of the vortex when subjected to a
continuous external forcing. This corresponds formally to the study of the particular
solution of equation (2.1a) as stated by Schmid (2007). Physically this particular
solution provides a model for a receptivity process, where the external forcing
may represent either free stream turbulence, wall roughness or other non-smooth
geometries, body forces or even neglected terms such as nonlinearities. This forcing
can also be linked to the deviation from the model base flow, like the presence of other
vortices far away or the boundary-layer perturbations generated at the sidewalls of the
wind tunnel. In that context of receptivity analysis, the continuous forcing used in this
study is chosen as generic and unbiased as possible in the form of white noise. Being
equally distributed in space allows all possible regions of the flow to be excited and
no specific wavelength or frequency to be favoured. Thus, if the wavelength selection
is case-dependent (on the dominant wavelengths or frequencies of the external forcing
in real-life conditions for instancet, see the preceding section), the quantification of
the amplification is nevertheless a measure of the intrinsic transfer function of the
Lamb—Oseen vortex, and reveals the intrinsic mechanisms that are favoured by the
flow. Here it is shown that the largest response is observed in forcing scenarios that
convert perturbations in the form of azimuthal velocity streaks into intense azimuthal
vortex rings (for the axisymmetric part of the flow), and perturbations in the form
of spiralling axial vorticity sheets outside the vortex into large bending (m =1) and
deformation waves (m > 1) within the vortex. It is noteworthy that these mechanisms
are similar to the ones uncovered by non-modal studies of the initial-condition
problem such as optimal perturbation analyses (PH06; AB07) and are consistent with
the numerical simulations of the interaction of a vortex with an initial turbulent field.
This suggests that such mechanisms are robust and fundamental to the dynamics of
perturbed vortices. It is expected that they are potentially active whatever the details
of the vortex flow and the perturbations considered.

4.3. Validity of the linear approach

This work has been conducted within the linear approximation and it is important
to assess how the results obtained here are affected by the nonlinearities. The
physical mechanisms of transient energy amplification considered here and in the
studies of PHO6 and ABO7 are linear. As argued by Miyazaki & Hunt (2000), linear
analysis correctly describes these processes or at least their initial development, while
the nonlinearities affect the further evolution of individual structures. This point
is currently under investigation via direct numerical simulations of the nonlinear
evolution of the optimal perturbations. Preliminary results for the m =0 case show
that the azimuthal vorticity rings of the output structure are self-advected away from
the vortex axis, carrying the streaks of high azimuthal velocity of the forcing structure.
Due to the conservation of angular momentum, the intensity of the streaks decreases
as the structures move radially outwards. Thus, the axisymmetric mechanism of energy
growth is progressively damped by the nonlinearities. In the case of a maintained

1 More precisely, as mentioned by one referee, a forcing of the form of a realistic turbulent signal
would inject very low-amplitude perturbations at large scales k — 0, and therefore a peak is expected
at some finite wavelength in the response variance for each m. This wavelength selection will depend
on the spectral content of the azimuthal Fourier decomposition of the turbulent signal, which might
be highly sensitive to the particularities of the experimental environment in the long-wave limit.
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forcing, this nonlinear damping effect is expected to be of minor importance as the
streaks of azimuthal velocity would be statistically regenerated continuously.

Concerning the external forcing from a more general perturbation field, the
nonlinear development of the flow should be considered for all wavenumbers
simultaneously. Numerical simulations including a continuous forcing would be of
great interest in order to show how the amplification factors obtained here are affected
by the nonlinear effects (i.e. saturation). For the case of a transient forcing induced by
an initially homogeneous isotropic turbulence, Takahashi et al. (2005) performed such
analysis. The departure from the linear regime occurs when the bending wave growing
in the core reaches a finite amplitude. They measured the impact on nonlinearities
quantitatively through the time dependence of the axisymmetric axial correlation
function. Its temporal growth was observed to be proportional to ¢, contrary to
linear RDT analyses where a quadratic time dependence was found (Miyazaki &
Hunt 2000). Thus, the nonlinear terms tend to limit the energy growth and a similar
saturation is expected for any generic random forcing.

5. Conclusions

The goal of the present study is to analyse the dynamics of the Lamb-Oseen
vortex when continuously forced by a random excitation. Considering the existence
of transient growth in vortices when subjected to specific perturbations, this work aims
to determine if the optimal perturbations found by Antkowiak & Brancher (2004,
2007) and Pradeep & Hussain (2006) could naturally emerge from background noise.
For this purpose, the linear Navier—Stokes equations are continuously forced with
Gaussian white noise so as to mimic any perturbations occurring in real transitioning
flows. We then looked at the large-time statistical response of the vortex and at the
coherent structures participating in its excitation. Not only does this method allow
the energy gain of the system to be quantified but also finds and orders the coherent
input (resp. output) structures according to their contribution to the excitation (resp.
variance or response) of the flow.

For all azimuthal wavenumbers investigated, energy amplification is always
observed, but when m > 2 the levels reached are too small compared to those obtained
for smaller values of m to be significant. Compared to the optimal perturbation
analysis, the levels of amplification obtained here are always higher since they
correspond to energy growth resulting from a continuous noise input and not from
a single initial condition. This difference in the value of the gain is particularly
marked when the optimal perturbation evolves on a short time scale. In such cases,
the sub-optimal perturbations should be considered as they participate equally in the
vortex response. This point is one advantage of the stochastic forcing approach.
The optimal perturbation analysis classically focuses on the most amplified
disturbance and can sometimes miss some transitional scenarios. This is what we
observe for the m =2 case where no prevailing mechanism has been found to dominate
the vortex dynamics.

Focusing on the physical mechanisms leading to energy growth, the scenarios
leading to the vortex excitation identified by Antkowiak & Brancher (2004, AB07)
and PHO6 are recovered. This study confirms that the optimal perturbations can be
activated naturally by the background noise present in uncontrolled conditions.

In the axisymmetric case, the mechanism called ‘anti-lift-up’ by ABO7 consists of
the emergence at the vortex periphery of strong tori of azimuthal vorticity fed by
the azimuthal velocity streaks of the forcing structure. This scenario is a theoretical
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counterpart to the observation of the recurrent development of vortex rings at the
periphery of vortices when submerged in an ambient turbulence (Melander & Hussain
1993; Risso et al. 1997; Takahashi et al. 2005).

For helical perturbations, the excitation of the vortex is explained by a transient
resonance phenomenon. The dominant forcing structure is composed of two left-
handed entangled vorticity sheets located in the quasi-potential region of the flow.
As time evolves, they progressively uncoil under the base-flow differential rotation
and trigger the appearance of a Kelvin wave through a process combining induction
effects and the Orr mechanism. The emerging Kelvin mode depends on the axial
wavenumber as the selection is based both on a minimization of the wave damping
rate and a concordance between the pulsations of both the mode and the vorticity
spirals. At large wavelengths where the gain is maximal, the displacement mode of
Fabre et al. (20006) is preferentially excited. The emergence of the displacement wave
under the influence of a maintained background noise is thus an interesting candidate
for the vortex meandering observed in the experiments (Baker et al. 1974; Devenport
et al. 1996).

This mechanism of resonance originating from a localized spiralling vorticity
disturbance also occurs for m =2 perturbations with the emergence of the flattening
wave. But it is in competition with other disturbances experiencing transient growth.
The disentanglement of the vorticity spirals via the base-flow differential rotation
leads to energy amplifications as large as those derived from the flattening mode
resonance. The existence of sub-optimal perturbations growing on a longer time
scale than the optimal one is put forward to explain the discrepancy between the
results obtained here and those of PH06. This point is to be confirmed. It will be
investigated in the near future with the computation of the sub-optimal perturbations
of the Lamb-Oseen vortex for m =2. For larger wavenumbers, the Orr mechanism
becomes the dominant process of energy amplification from a continuous random
excitation of the vortex.

Finally, the approach taken here answers the questions raised by the results of the
optimal perturbation studies of Antkowiak & Brancher (2004), ABO7 and PHO6. This
work demonstrates both analyses to be complementary. Such tools may be applied to
asymptotically stable flows whose dynamical operator is non-normal in order to find
an eventual transient mechanism. For example, Joly, Fontane & Chassaing (2005)
recently showed that low-density vortices were insensitive to the Rayleigh—Taylor
instability. Since the corresponding dynamical operator does not commute with its
Hermitian transpose, non-modal stability analysis (both initial value and stochastic
forcing formulations) should be conducted.

This work was supported by the European Community in the framework of the
FAR-WAKE project under grant number AST4-CT-2005-012238 and the French
National Research Agency as part of the VORTEX project.
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